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The Effect of Item Stratification

in Multiple Matrix Samplingl

Matrix sampling consists of a sample of n examinees

responding to a subtest of m items. The results of this subtest

administration are used to estimate parameters of the test score

distribution that would result if the population of N examinees

responded to the universe of M items. When several n-by-m samples

are used for this estimation the procedure is called multiple

matrix sampling. The mean of the estimates from the several

matrix samples is presented as the estimate of the test score

distribution parameter.

The usefulness of multiple matrix sampling has been

demonstrated by several authors including Lord (1962) and Plumlee

(1964). Once the efficacy of this method was shown, one of the

main questions that needed to be answered was which sampling plan

produced the most stable parameter estimates. Shoemaker (1970,

1971) investigated this-question by varying the sizes and numbers

of the item and examinee samples. Defining an observation as

one examinee's responee to one item he concluded that increasing

the number of observations improved the stability of the estimates.

He also stated that in estimating the mean it was best to use many

small item samples.

In other studies of sampling plans Kleinke (1969, 1972)

tried item stratification to improve the stability of estimation

from multiple matrix sampling. He stratified items on the basis

of content, difficulty, and a combination of both, and concluded

that stratification did not improve the stability of the estimates

of the mean and variance from the stability attained using simple

random sampling of items. However, Kleinke sampled from only one

data base. He suggested that stratified sampling of item universes

with a variety of combinations of item difficulties and interitem

correlations be investigated before a conclusion is reached con-

cerning item stratification in multiple matrix sampling. This

investigation was carried out in the study presented below.

1This paper is based on the author's Ph.D. dissertation sub-
mitted to the faculty of the Graduate School of Syracuse University.
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Theoretical Framework

Rajaratnam, Cronbach, and Glaser (1965) derived equations

for estimating the coefficient of generalizability from a model that

took stratification into account. Two studies (Cronbach, Schonemann,

and McKie, 1965; and Shoemaker and Osburn, 1968) have demonstrated

that for stratified sampling of items these equations produced more

accurate estimates of the coefficient than equ-tions that were de-

rived from a model that did not consider stratification. In the

present study an equation for estimating the variance of a test

score distribution based on stratification of items was derived.

The development of this equation followed closely the method used by

Sirotnik (1970) in deriving the equation for estimating the variance

in matrix sampling without item stratification. Sirotnik based his

derivation on a two-way analysis of variance model, the two factors

being examinees and items. Through algebraic manipulation of the

expected mean squares from this model he derived the equation

t

Y NM(n-
n(N1)(m-1)-1)

[m(M-1)s2 - (M -m)s, [1]

where: ay = estimated variance of test score distribution of
proportion correct scores;

s
2
= sample variance of examinee proportion correct

scores;
2

sj = mean of sample item variances.

This equation had earlier been derived by Lord (1960) using a

method based on bipolykays.

If the items are stratified , the appropriate analysis

of variance model is a split-plot design with items nested within

strata and completely crossed by examinees. The equation for

estimating the variance from this model is

2

Ys NM(n-1)(m-H) M(m-H)s
2

(M m)s, + h h y(h)1
[2]

t2 n(N-1) -2 (M-m) 2 m s

A2
where: a

Ys = the appropriate estimator of the variance of the
test score distribution of proportion correct scores
when items are stratified sampled;

m
h
= the number of items sampled from stratum h;
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2sy(h) = sample variance of,examinee proportion correct
scores within stratum h;

H = number of strata in sample or universe.

hethodoloay

Computer simulation of examinees responding to dichoto-

mously scored items produced the universes that were investigated.

The study was carried out using programs written in Fortran IV

and run on an IBM System/370 computer. The distributions of item

difficulties and interitem tetrachorics were manipulated to p,.o-

duce a variety of universes. The tetrachorics were used to simu-

late content strata.

Three distributions of item difficulties were used -

rectangular, normal, and negatively skewed. The negatively skewed

distribution was a reflection of a chi-square curve with three

degrees of freedom. All three distributions were limited to

difficulties between .1 and .9. Item difficulties for each item

universe were pseudo-randomly sampled from these distributions.

The difficulty strata were established by ranking the difficulties

from low to high and then dividing this ranking into quarters.

It '4,nould be noted that the item universes that were created by

simulation did not exactly meet the specifications discussed

above because each examinee population consisted of only 1000

examinees. The first four moments of the distributions that were

produced were well within the expected range of error. The accu-

racy of some of these moments could not be determined precisely

because the curves for the normal and skewed distributions had

closed, not infinite, tails.

Each distribution of difficulties was paired with each

of three sets of interitem tetrachorics to form different universes.

Twenty-four universes were studied. The within strata and among

strata tetrachorics for the three sets were, respectively, .3 and .3,

.5 and .3, and .5 and 0. The last set of correlations is not likely

to be found on a mental test but was included in the study to deter-

mine the effect of such pure content strata on the stability of

parameter estimation in multiple matrix sampling. There were four

content strata in each universe.

In generating examinee responses to items the assumption

5



-4-

was made that the underlying ability of examinee i on the skill

being measured by item 1 within stratum h is represented by the

linear model for the split-plot analysis of variance design.

This model is

X
ij(h)

= A O. + 8
h r 4- 80

hi
+ Origh)j(h)

where: Xij(h) = the ability level of examinee i on the skill
being measured by item 1 within stratum h;

A = general effect, equivalent to the matrix population
mean;

0. = the effect of examinee i;

8
h
= the effect of stratum h;

ri(h) = the effect of item 1 within stratum h;

S#hi = the interaction between examinee i and stratum h;

#righ) = the interaction between examinee i and item
1 within stratum h.

[3]

To produce items with the desired tetrachorics it was necessary

to generate these underlying ability levels for the items as

multivariate normal variables with product-moment correlations

equal to the specified tetrachorics. The correlation of abilities

tested by any two items, j and j*, is represented by the correla-

tion between Xigh) and Xij*(h*) (h = h* and j = j* may be true)

across the examinees. This will be indicated by r . This
jj*

correlation between two sums is affected by the examinee related

components of equation 3 - 0, 80, and Or. The covariances of 811

and 8h* and of ri(h) and rj*(h*) are equal to zero since these

factors are constant for all values of i. The 0 and 80 factors

were generated as normally distributed variables with means equal

to zero and variances of one. The covariance of the 0 factors was

equal to one since the effect of examinee i was the same for all

items. Since the 80 factors were fixed effects it was determined

that the covariance of 80
hi

and 80
h*i was equal to 1/3 for all

h h*. This has been proven by Searle (1971, pp. 400-402). Using

the values discussed above and setting the value of nor equal to

five,theequationforr..could he solved for the values of r
JJ* Ow

(the correlation between Or.igh) and Ov..* (h*)) needed to produce
ij

the desired values of rjj*. Establishing .70, equal to five was

necessary to produce values of r that would form a proper corre-

lation matrix. The #r terms were normally distributed with means
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equal to zero. The sum of the three examinee related terms pro-

duced the examinee ability level. These ability levels were

standardized to normal variables with means equal to zero and

variances equal to one.

The pseudo-random generation of multivariate normal

deviates was performed by first generating a row vector, U, of

independent normal deviates using a method outlined by Meyer (1969).

This vector was then transformed to V = UT, a vector that was, in

effect, sampled from a population of vectors whbse elements have

specified correlations. The transformation matrix, T, is the

upper triangular matrix that results from the square-root decompo-

sition of the correlation matrix of the variables being generated.

This method of generation was outlined by Parr and Slezak (1972).

The continuous ability levels were dichotomized by com-

paring the examinee's ability score for item to Zj = t-1(1 - Pj),

where o is the standard normal distribution function and Pj is the

difficulty of item i. If examinee i's ability level on item I was

greater than or equal to Z
j

. examinee i was considered to be

successful on itch. and was given a score of one for that item.

If the ability level was less than Zj, the score was zero. This

method produced items with resulting difficulties that were

extremely close to the values that had been originally generated

to form the item universes. About 854 of the items had difficulties

that were within .02 of these original values. The tetrachorics

that resulted from this method,for the universes of 1000 examinees,

were generally close to the values specified. Eighty-four percent

of a 2.54 pseudo-random sample of the correlations were within

+ .07 of the specified values.

For each combination of difficulties , tetrachorics,

and type of stratification three multiple matrix sampling plans

were studied to see what effect differing item sample sizes would

have on the estimation of the mean and variance. The three plans

divided the 48-item universes into 3, 6, or 12 samples. The items

were exhaustively sampled. The types of sampling studied were

simple random, difficulty stratified, content (tetrachoric)

stratified, and combined difficulty and content stratified. Each

item sample was matched with an examinee sample of 16. In none

of the plans were the examinees exhaustively sampled. Each sampling
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plan was replicated 500 times for each universe.

To judge which item sampling plan and which variance

estimator produced the best estimates, the mean squared errors

(MSEs) of the estimates were compared. Negative estimates of the

variance were included in the computation of the MSEs because the

main purpose of the study was to investigate the stability of the

parameter estimates. Not including the negative estimates would

have distorted the estimates of this stability.

Results and Discussion

The results indicate that stratification of items does

not consistently improve the stability of the estimation of the

mean and variance in multiple matrix sampling for the item universes

and sampling plans studied. In a few cases there may be evidence

favoring stratification. However, with one possible exception, no

trend emerges to indicate that stratification of items should be

recommended on statistical grounds.

Presented in Table 1 are the results for estimating the

mean. The means (A) and the MSEs for each distribution of 500

estimates are presented along with the means (A) of the test score

distributions. In 16 of the 24 universes studied, stratification

of items on the basis of difficulty produced a smaller MSE than

simple random sampling of items. However, no distribution of

difficulties, no set of tetrachorics, nor any sampling plan had

a systematically lower MSE for stratification. In only 7 of 19

cases was the VISE from item sampling with content stratification

less than from simple random sampling of items. The only systematic

improvement was found with simultaneous stratification of content

and difficulty where stratification produced smaller MSEs for all

6 universes.

The results for estimating the variance are shown in

Tables 2 and 3. The means (a
2

or g2 ) and MSEs for each distri-

bution
Ys

2
of 500 estimates are presented along with the variances (ay)

of the test score distributions. Difficulty stratification and

simultaneous difficulty and content stratification were sometimes
A

accompanied by a negative bias when a was used to estimate the

variance. The bias increased as the difference between the inter-

item correlations within strata and among strata increased. There
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was no bias when the within and among correlations were equal. The
A2

bias was remove

a
2
d by ay There was not any bias in the variance

Aestimates of when content stratificationication was used.
2 A2

When the derivations of a and a
Ys

are compared, the alge-

braicbraic representation of the bias in (Ify can be seen. Sirotnik (1970)

showed that

(1-0 E[MS(exam. by items)],2 = E[MS(exam.)]
[4]

when the two-way analysis of variance design is used. When the

split-plot design is appropriate, the second term on the right

side of equation 4 becomes

(1-n) E[MS(exam. by items within strata)]

m

The first term remains the same. The relationship between ex-

pression 5 and the second term on the right side of equation 4

can be determined from the equality

SS(exam. by items) = SS(exam. by strata) +

SS(exam. by items within strata).

After determining the expected values of both sides of equation

6, the bias in P2
Y'

when stratified sampling is appropriate,can be

shown to be

m(8-1)(72
m-mh 2

M(m-1)

[5]

[6]

[7]

As the sampling fraction for items decreases the second term in

expression 7 becomes dominant, increasing the negative bias. The

results in Table 2 verify this statement. The reasons that cer-

tain interitem correlations affect this bias have not been deter-

mined. Future investigation of this problem is needed.

In general, stratified sampling is beneficial compared

to simple random sampling when it establishes a sampling plan that

can force similarity among samples and thereby control a large

portion of the variance across the samples. Item stratification,

as done in the present study, does not do this. It would be

possible to control more variance across samples if examinees



were also stratified. However, the complexity of such a sampling

plan may make it impractical.

Another possible way to improve the stability of estima-

tion in multiple matrix sampling might be to sample more items

from strata with larger variances of item difficulties. Cochran

(1963, p. 96) has shown that in the usual one dimensional sampling,

larger samples should be taken from strata wi )r variances.

However, the results of the present study seem (A) indicate that

this probably will not reduce MSEs in multiple matrix sampling.

The normal and skewed distributions of items had strata with

unequal variances of item difficulties. If these unequal variances

had an effect on the MSEs of the estimates from universes with

normal and skewed distributions of difficulties the evidence

presented by Cochran indicates that stratified sampling would

hq.ve produced consistently larger MSEs than simple random sampling

for these universes. The results aid not show this. The proportion

of universes in which stratified sampling produced smaller MSEs was

about the same for all three distributions of difficulties. For

example, in estimating the mean for universes with rectangular

distributions, 11 of 16 sampling plans favored stratification. For

the skewed and normal distributions there were 8 of 16 and 10 of

16 plans, respectively, that favored stratification.

The conclusion that item stratification does not improve

the stability of parameter estimation in multiple matrix sampling

is consistent with the conclusion presented by Kleinke (1972).

However, as he out, there lay be practical considerations

that indicate stratification should be used. One such consideration

is the time needed to administer each sample of items. Certainly

most principals would not want to have a test used in their school

that would cause some students to finish long before others. There

is always going to be some variance in testing time for examinees

but stratified sampling of items can help to minimize this variance.

Item stratification does not hurt the stability of estimation when

the proper variance estimation is used. Thus, if practical problems

can be solved by item stratification, it certainly should be used.
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